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Glass synchronization in the network of oscillators with random phase shifts

Kibeom Park, Sung Wu Rhee, and M. Y. Choi
Department of Physics and Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea

~Received 23 October 1997!

We investigate the synchronization properties in a network of oscillators with random phase shifts. In the
absence of the shift, the system reduces to the well-known Kuramoto model, which displays synchronization of
phases. We introduce an additional order parameter describing glass synchronization and obtain self-
consistency equations through the use of the replica method. In the presence of appropriate phase shifts, the
system is found to exhibit both phase synchronization and glass synchronization. It is also pointed out that the
proper scaling of the coupling strength with the system size depends on the degree of randomness.
@S1063-651X~98!03805-7#

PACS number~s!: 05.90.1m, 05.40.1j, 05.70.Fh
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I. INTRODUCTION

Large systems of mutually interacting oscillators ha
been used to explain the cooperative phenomena that pr
in physics, chemistry, biology, or even in social scienc
One of the most remarkable features of such an oscill
system is collective synchronization among its constitue
which is well understood by means of the Kuramoto ph
model@1#. The model is simple and mathematically tractab
because of its global coupling structure. This all-to-all glob
coupling, which might seem to be unrealistic at first sig
arises naturally in certain cases, e.g., intracavity lasers, s
arrays of Josephson junctions, and biological systems@2,3#.
Recently, it has been shown that a current-driven networ
superconducting wires constitutes a physical realization
the Kuramoto model and interesting features of the netw
may be explained in terms of synchronization@4#. The net-
work system has also attracted interest with regard to
possibility of glassiness in the presence of a transverse m
netic field@5–8#, which is characterized by the divergence
the relaxation time, hysteresis, memory and aging effe
and an extensive number of metastable states separate
barriers scaling with the system size. In the context of s
chronization, however, little is known about the glas
phase, which is in general believed to be caused by rand
ness and frustration. In existing studies of randomly intera
ing oscillators, neither clear evidence of glassiness nor
behavior of Edwards-Anderson~EA! order parameter ha
been reported@9,10#.

The purpose of this paper is to investigate the effects
random phase shifts on synchronization properties in the
work of oscillators. We introduce the EA order parame
and inspect the possibility of glass transition. Here a
arises an interesting question as to the scaling of the coup
constants with the system size. In the Kuramoto model, e
oscillator interacts with all the others, resulting in that t
coupling constant should scale with the inverse of the sys
size N. On the other hand, in the wire network, the pha
shift Ai j due to a strong magnetic field in the gauge-invari
phase difference takes rapidly fluctuating values and can
safely treated as a quenched random variable@4,6#. In this
case, the proper scaling of the coupling constant goes
1/AN in the thermodynamic limit. Note that the two mode
571063-651X/98/57~5!/5030~6!/$15.00
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can be connected via the generalized model, whereAi j ’s
vary in the range@2gp,gp) with a real numberg between
0 and 1. It is thus expected that the proper scaling of
coupling changes asg is increased from zero to unity. It is
revealed that the scaling changes rather abruptly at the f
random valueg51.

This paper consists of four sections. In Sec. II we der
the effective Hamiltonian from the Fokker-Planck equati
and obtain the self-consistency equations for the phase
chronization~PS! and the glass synchronization~GS! order
parameters. It is shown that the glass transition appears
near the fully random regiong;1. We also obtain schemati
phase boundaries as functions of the coupling strength, n
strength, and randomness. Section III is devoted to the an
sis of the network of superconducting wires and Sec.
summarizes the main results.

II. EFFECTIVE HAMILTONIAN AND
SELF-CONSISTENCY EQUATIONS

We consider a network of oscillators, each of which
characterized by its phase and coupled to all the other o
lators with strengthK. The system is described by the set
equations of motion

du i

dt
5v i2K(

j
sin~u i2u j2Ai j !1j i~ t !, ~1!

whereu i andv i are the phase and the natural frequency
the i th oscillator, respectively, andAi j ’s are random phase
shifts taking values in the interval@2gp,gp) with g mea-
suring the degree of randomness. The random noisesj i(t)
are characterized by

^j i~ t !&50,

^j i~ t !j j~ t !&52Td i j d~ t2t8!,

where the noise strengthT takes the role of the temperatur
Without loss of generality, we set the mean natural f
quency equal to zero and assume thatv i ’s are distributed
according to a Gaussian distribution with unit varianc
5030 © 1998 The American Physical Society
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57 5031GLASS SYNCHRONIZATION IN THE NETWORK OF . . .
which is achieved by rescaling time and measuring the c
pling constant and the noise strength in units of the varia
of the frequency distribution.

A convenient way to deal with a set of Langevin equ
tions ~1! is to resort to the Fokker-Planck equation for t
appropriate probability density. In the Kuramoto model, it
convenient to introduce the order parameterrexp(if)
[(1/N)( jexp(iuj), which allows one to decouple the set
equations~1! and to deal with the single-oscillator probab
ity density. The stationary solution of the correspondi
Fokker-Planck equation for the one-oscillator probabil
density has been given at finite temperatures@11,12#.

In the presence of the phase shifts, however, the resu
frustration prevents such reduction; we thus resort to
equation for theN-oscillator probability densityP($u i%,t),
which leads to a stationary solutionP(0)($u i%)}exp
@2H($ui%)/T# with the effective Hamiltonian

H52
K

2(
iÞ j

cos~u i2u j2Ai j !2(
i

v iu i ~2!

at temperatureT. In principle, the proper solution of th
Fokker-Planck equation should satisfy the normalization
periodicity conditions, whereas in the above action the ra
of u is extended and periodicity is lacking. Nevertheless,
inherent periodicity of the equation of motion allows one
treat the phase as an extended variable simply by taking
integration range from2np to np. We thus regardH in Eq.
~2! as the effective Hamiltonian with period 2np, where the
limit n→` is to be taken. The validity of the above Ham
tonian with the extended variable can easily be justified, e
by means of the Villain approximation, which gives accura
results at low temperatures. Within the Villain scheme, it
straightforward to show that the corresponding action p
vides a stationary solution to the periodic Villain form of th
Fokker-Planck equation and yields results independent on.
As we shall see below, the self-consistency equations
order parameters obtained from Eq.~2! are indeed indepen
dent ofn and reproduce precisely all the known results in
appropriate limits. We thus believe that the Hamiltonian~2!
describes the correct stationary properties of the system
erned by Eq.~1! in the region of interest@13#. The average
over the quenched random phase shifts$Ai j % is performed
through the use of the replica method. The replicated pa
tion sumZn̄ can be represented by

Zn[KK (
$ua%

e2H~ua!/TLL
v

5 (
$ua%

Z1Z2KK expS ~1/T!(
a,i

v iu i
aDLL

v

, ~3!

with

Z1[expH(
a

aK

2TF S (
i

cosu i
aD 2

1S (
i

sinu i
aD 2G J ,
u-
e

-

g
e

d
e
e

he

.,
e

-

or

e

v-

ti-

Z2[expH (
a,b

1

4S K

T D 2

(
i , j

@~122a21b!cos~u i
a2u j

a!

3cos~u i
b2u j

b!1~12b!sin~u i
a2u j

a!sin~u i
b2u j

b!#J
^ expH(

a

1

8S K

T D 2

(
i , j

@~122a21b!cos2~u i
a2u j

a!

1~12b!sin2~u i
a2u j

a!#J , ~4!

where a[singp/gp, b[sin2gp/2gp, a and b are replica
indices, and the overbar and^^ &&v denote the quenched av
erages over the distribution ofAi j and over that ofv i , re-
spectively.

It is easy to check that without randomness (g50), lnZ2
vanishes and the Kuramoto model is recovered. At fin
temperatures, the Kuramoto model has been analy
through the use of the Fokker-Planck equation for the o
oscillator probability density@11,12#. Here we briefly show
how the same results are reproduced by the replica met
The free energy per oscillator is given by

f 5 lim
n→0

T

nNF12E ) dAadBae2NFG , ~5!

where

F[
KN

2T (
a

~Aa
21Ba

2 !2 ln Tr@u#KK expFKN

T (
a

~Aacosua

1Basinua!1
1

T(
a

vuaG LL
v

,

with the proper scaling of the coupling constant given
K5K̃/N. In the limit N→`, the mean-field equations follow
from the saddle-point conditions and take the form

Aa5 ^̂ ^cosua&&&v ,

Ba5 ^̂ ^sinua& &&v , ~6!

where^ & stands for the average with respect to the actio

L5expF K̃

T(
a

~Aacosua1Basinua!1
1

T(
a

vuaG .

We adopt the replica-symmetric ansatz and setAa5m1 and
Ba5m2. Performing the average with respect to the Gau
ian distribution ofv, we obtain the free energy in the form

f 5
K̃

2
~m1

21m2
2!2TE Dz ln I ~x;z!, ~7!

with I (x;z)[(n(21)nI n(x)@(z/T)21n2#21 and x

[(K̃/T)Am1
21m2

2, whereI n is the modified Bessel function
of the first kind and*Dz represents the average over t
normalized Gaussian variablez. The self-consistency equa
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5032 57KIBEOM PARK, SUNG WU RHEE, AND M. Y. CHOI
tion for the PS order parameterm[Am1
21m2

2 is then ob-
tained by differentiating the free energy with respect tom:

m5E Dz
I 8~x;z!

I ~x;z!
, ~8!

whereI 8(x;z)[dI(x;z)/dx. Here the shift of the integration
range ofu in performing the trace in Eq.~5! does not change
the final form of Eq.~8!. In this sense, the correct periodici
is restored, which suggests that the Hamiltonian in Eq.~2!
indeed describes the correct stationary behavior of the
tem in the whole region of interest. Note also that Eq.~8!
indeed agrees with the result of Ref.@12# in the appropriate
limit, displaying coherent motion characterized by glob
synchronization forK̃ exceeding the critical valueK̃c . In the
zero-temperature limit, the direct expansion of Eq.~8! fails
@4# and we adopt the spin-wave approximation, which is
curate at low temperatures. Analyzing Eq.~8! via the proce-
dure largely similar to that in Ref.@4#, one can easily obtain
the familiar form

m5K̃mE
21

1 dx

A2p
e2~K̃mx!2/2A12x2, ~9!

which yields the critical value ofK̃ at zero temperature
K̃c(T50)5A8/p. A typical phase diagram on the (K̃,T)
plane has been shown in Fig. 1 of Ref.@4#.

In the opposite limit of the fully random shift (g51),
lnZ1 vanishes and the free energy per oscillator reads

f 5 lim
n→0

T

nNF12E ) dQabdPabe2NFG , ~10!

with

F[
N

4 S K

T D 2

(
a,b

@~Qab!21~Pab!2#2 ln Tr@u#

3KK expH N

2 S K

T D 2

(
a,b

@Qabcos~ua2ub!

1Pabsin~ua2ub!#1
1

T(
a

vuaJ LL
v

,

FIG. 1. Phase boundary forg51 on the (K̃,T) plane, below
which glass synchronization appears.
s-

l

-

which manifests that the coupling constantK should scale as
K5K̃/AN. In the limit N→`, the mean-field equations tak
the form

Qab5 ^̂ ^cos~ua2ub!& &&v ,

Pab5 ^̂ ^sin~ua2ub!& &&v , ~11!

with the action

L5expH 1

2
S K̃

T
D 2

(
a,b

@Qabcos~ua2ub!

1Pabsin~ua2ub!#1
1

T(
a

vuaJ .

Note that Eq.~11! corresponds tô̂ ^sa* sb& &&v in terms of
the XY spin s[exp(iu). Thus the order parametersQab and
Pab are related to the EA order parameter measuring
overlaps between two replicas. Considering the U~1! symme-
try of the whole system and assuming the replica symme
we setQab5q andPab50, which yields the free energy in
the form

f 5
K̃2

8T
~2q2q2!2TE DzDz1Dz2ln I ~x;z!, ~12!

with x[Aq/2(K̃/T)Az1
21z2

2. The self-consistency equatio
for the GS order parameterq is then given by

12q5E DzDz1Dz2H I 9~x;z!

I ~x;z!
2F I 8~x;z!

I ~x;z! G2

1
I 8~x;z!

xI~x;z!J ,

~13!

which allows a nontrivial solution forK̃.K̃g(T). Since the
PS order parameter is always zero in this case (g51), the
nontrivial solutionqÞ0 implies the appearance of the gla
phase or GS. Adopting the spin-wave approximation in
zero-temperature limit, one can easily see thatq approaches
unity asT→0, which impliesK̃g(T50)50 regardless ofg.
Figure 1 displays a schematic phase diagram forg51 on the
(K̃,T) plane: Below the phase boundary@K̃.K̃g(T)#, GS
emerges.

We next consider the intermediate region 0,g,1. It is
obvious thatK is of the order ofN2a with 1/2<a<1 in a
globally coupled system, which makesZ2 in Eq. ~3! arbi-
trarily small compared toZ1. This indicates that the random
ness, unless it is perfect, does not destroy the PS but
renormalizes the coupling constant fromK to aK. We thus
conclude that the qualitative character of the system is
affected by a small amount of disorder and the behavior
the system changes rather abruptly at the fully random lim
To observe the transition more precisely, we setg51
2k/AN together withK[K̃/AN, which makesZ1 andZ2 be
the same order. The free energy is then given by

f 5 lim
n→0

T

nNF12E ) dAadBadQabdPabe2NFG ,
~14!
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with

F[
K̃k

2T(
a

~Aa
21Ba

2 !1
1

4
S K̃

T
D 2

(
a,b

@~Qab!21~Pab!2#

2 ln TrKK expH 1

T(
a

vua1
K̃k

T (
a

~Aacosua

1Basinua!1
1

2
S K̃

T
D 2

(
a,b

@Qabcos~ua2ub!

1Pabsin~ua2ub!#J LL
v

.

The saddle-point equations read

Aa5 ^̂ ^cosua& &&v ,

Ba5 ^̂ ^sinua& &&v ,

Qab5 ^̂ ^cos~ua2ub!& &&v ,

Pab5 ^̂ ^sin~ua2ub!& &&v ,

with the corresponding action. We again assume the rep
symmetry and setAa5m1, Ba5m2, Qab5q, and Pab50,
which gives the free energy in the form

f 5
K̃k

2
m21

K̃2

8T
~2q2q2!2TE DzDz1Dz2ln I ~x;z!,

~15!

wherex[Ax1
21x2

2 with

x1[
1

TS K̃km1Aq

2
K̃z1D ,

x2[Aq

2

K̃z2

T
,

and the PS order parameterm[Am1
21m2

2. Differentiating
the above free energy with respect tom andq, we finally get
the self-consistency equations

m5E DzDz1Dz2

x1I 8~x;z!

xI~x;z!
, ~16!

12q5E DzDz1Dz2H I 9~x;z!

I ~x;z!
2F I 8~x!;z

I ~x;z! G2

1
I 8~x;z!

xI~x;z!J .

~17!

Note that Eq.~17! is of the same form as Eq.~13! and re-
duces to the latter whenk50. Equations~16! and~17! may
be solved numerically to yield the phase boundaries in
(k,K̃,T) space separating the synchronized, desynchroni
and glass phases from each other. Figure 2 shows sche
cally the zero-temperature phase boundary on the (k,K̃)
plane: Above the boundary, Eq.~16! yields a nontrivial so-
lution for m, while Eq.~17! always has a nontrivial solution
for q at zero temperature. Therefore, the phase boundar
ca

e
d,
ati-

in

Fig. 2 separates the phase state from the glass synchron
state. The schematic phase diagram at finite temperature
the (k,K̃,T) space is displayed in Fig. 3.

In the thermodynamic limit, however,k is not a realizable
parameter and it is natural to examine the behavior accord
to the value ofg. Unlessg51, the PS order can be sustaine
and the proper scaling should beK5K̃/N in the range 0
<g,1. When K̃ exceeds the critical valueK̃c , the non-
trivial solution for m exists, makingZ1 dominant. Here, al-
though lnZ2 is of the order of 1/N, q is still of the order of
unity and determined by a function of nonzerom. In the case
that K̃,K̃c , the PS is destroyed (m50) and the coupling
constant in the self-consistency equation for the GS or
parameterq becomes of the order of 1/AN, which makesq
also vanish in the thermodynamic limit. This indicates th
the nonzero PS and GS order parameters appear at the
critical valueK̃c , which depends on the temperature. Asg

approaches unity,K̃c grows arbitrarily large, as can be ob
served in Eq.~16!, and finally atg51, the PS order is en
tirely banished. The region of the nonzero GS order para
eter also shrinks asg is increased; nevertheless, unlike th
PS, the GS phase still survives atg51 and occupies a finite
region, as shown in Fig. 1. In this fully random limit, th
proper scaling becomesK5K̃/AN.

III. NETWORK OF SUPERCONDUCTING WIRES

In this section we consider a network of superconduct
wires, which consists of two orthogonal sets ofN parallel
superconducting wires with Josephson junctions at e

FIG. 2. Zero-temperature phase boundary on the (k,K̃) plane,
separating the~phase! synchronized state from the glass synchr
nized one.

FIG. 3. Schematic phase diagram in (k,K̃,T) space. Phase syn
chronization emerges below the surface drawn by dashed li
whereas glass synchronization occurs between the two surfa
Above the surface drawn by solid lines, neither of the two types
synchronization can exist.
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5034 57KIBEOM PARK, SUNG WU RHEE, AND M. Y. CHOI
node. Uniform currentI ext is injected at one edge of eac
wire and extracted at the opposite edge. The current con
vation condition at each wire then gives the equations
motion @4#

u̇ i
~1!5

1

N(
j

u̇ j
~2!1v i

~1!2K(
j

sin~u i
~1!2u j

~2!!1j i~ t !,

u̇ j
~2!5

1

N(
i

u̇ i
~1!1v j

~2!2K(
i

sin~u j
~2!2u i

~1!!1j j~ t !,

~18!

whereu i
(1) andu i

(2) are the phases ofi th horizontal and ver-
tical wires, respectively,v i[2eRIi

ext/N\ corresponds to the
natural frequency of thei th wire with the shunt resistanceR,
andK measures the coupling strength between the horizo
and vertical wires. As in the preceding section, one can
tain the Fokker-Planck equation for the 2N-wire probability
density and the resulting effective Hamiltonian. In the pr
ence of a transverse magnetic field, the phase differenc
replaced by the gauge-invariant one and the effective Ha
tonian takes the form

H52K(
i , j

cos~u i
~1!2u j

~2!2Ai j !2(
i

~v i
~1!u i

~1!1v i
~2!u i

~2!!,

~19!

where Ai j 5(2p/F0)* i
jA•dl with the flux quantumF0.

Adopting the Landau gaugeA5Bxy with B being the
strength of applied field, we obtainAi j 52pf i j /N with the
flux per unit strip f[NBa2/F0, where a is the distance
between two adjacent~parallel! wires. As is pointed out in
Refs.@5,6#, Ai j ’s can be regarded as quenched random v
ables in the strong-field limit (f@1/N). Further, it is natural
to assume thatAi j andAji are mutually independent becau
the small difference in the areas made by thei th horizontal
and j th vertical wires and by thej th horizontal andi th ver-
tical wires leads to significantly large difference betweenAi j
and Aji . This assumption allows quite an easy analysis
cause the correlations between the phases of horizontal w
and those of vertical wires vanish. Accordingly, the mea
ingful overlaps of horizontal and vertical wires are defin
separately as

Qab
~1![^̂ ^cos~u~1!a2u~1!b!& &&v~1!,

Qab
~2![^̂ ^cos~u~2!a2u~2!b!& &&v~2!. ~20!

It is then straightforward to write down the self-consisten
equation forqk5Qab

(k) (k51,2),

12qk5E DzDz1Dz2H I 9~xk ;z!

I ~xk ;z!
2F I 8~xk ;z!

I ~xk ;z! G2

1
I 8~xk ;z!

xkI ~xk ;z!J , ~21!

with xk[Aqk/2(K̃/T)Az1
21z2

2, whereq1 andq2 play the role
of the EA order parameters of horizontal and vertical wir
respectively.
er-
f

al
-

-
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il-
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-
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-

,

It is important to note here that the degree of randomn
g is not related to the strength of applied field in a dire
way. Even in the weak-field limit, the distribution of th
phase shiftAi j still covers the whole range@2p,p), al-
though the distribution is not random but periodic, depend
on i and j . As a consequence, phase synchronization is
stroyed by the existence of even a weak field, which is c
sistent with the existing studies on glassiness in the netw
of wires @5,6,8#. It is thus concluded that frustration rathe
than randomness plays an important role in glassiness
fact, it has been shown that the randomness without frus
tion can be easily removed@10#. The quantitative investiga
tion of the GS order parameter in the weak-field limit wou
be an interesting topic for further study.

IV. SUMMARY

We have studied the synchronization properties in the n
works of coupled oscillators with random phase shifts, w
emphasis on the possibility of glass synchronization. Wh
the system without randomness is well known to disp
phase synchronization, the fully random system is charac
ized by glass synchronization. To investigate in detail
effects of the random phase shift, we have introduced a
rameter controlling the degree of randomness and obta
the self-consistency equations for the phase synchroniza
and the glass synchronization order parameters through
use of the replica method. It is found that partial randomn
in the phase shift merely alters the coupling constant, s
leaving the phase synchronization possible. In this case,
proper scaling of the coupling constant goes as 1/N and the
corresponding equations of motion under this scaling rev
that the nonzero phase and glass synchronization order
rameters emerge at the same value of the coupling stren
This indicates that there does not exist the glassy phase in
system with partially random phase shifts, characterized
the nonzero glass synchronization order parameter toge
with the vanishing PS order parameter. Near the fully ra
dom regime, on the other hand, the phase synchroniza
order parameter diminishes to zero, but a finite region of
nonvanishing glass synchronization order parameter still
mains, signaling the glass phase in the system. In this f
random case, the proper scaling for the glass transitio
given by 1/AN, as expected. We have thus obtained a sc
matic phase diagram in the three-dimensional space of
temperature, coupling strength, and randomness.

We have also considered the network of superconduc
wires in the presence of positional disorder. In the stro
field limit, the bond angles~phase shifts! between the hori-
zontal set and the vertical set of wires may be regarded
quenched random variables. Further, in the presence of
positional disorder, it is allowed to treat them as independ
of each other. This leads to the self-consistency equations
the glass synchronization order parameters, which are lar
similar in form to those in the globally coupled system. Th
the qualitative behavior is concluded to be the same, wh
originates from the fact that positional disorder tends to s
press the overlap between the two sets of wires.

Finally, we point out that the network of globally couple
oscillators, in which the static features of the glass transit
have been studied here, may be regarded as the mean
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57 5035GLASS SYNCHRONIZATION IN THE NETWORK OF . . .
version of the XY gauge-glass model. The gauge-gla
model has been extensively studied in relation to the vor
glass phase of disordered superconductors@14#. In two di-
mensions, equilibrium studies have suggested the absen
glass order at finite temperatures@15#, while the dynamical
investigations seem to favor a finite-temperature glass t
sition, leading to controversy as to its nature as well as
istence@16#. It should be noted that a dynamic glass tran
tion is not necessarily accompanied by an equilibrium o
and provides a wealth of interesting phenomena, wh
ce

-

,

ett
,

n,

t.
s
x-

of

n-
x-
-
e
h

cannot be inferred from equilibrium studies. It is thus
interest to investigate the dynamics of the network syste
which is left for future study.
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