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Glass synchronization in the network of oscillators with random phase shifts
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We investigate the synchronization properties in a network of oscillators with random phase shifts. In the
absence of the shift, the system reduces to the well-known Kuramoto model, which displays synchronization of
phases. We introduce an additional order parameter describing glass synchronization and obtain self-
consistency equations through the use of the replica method. In the presence of appropriate phase shifts, the
system is found to exhibit both phase synchronization and glass synchronization. It is also pointed out that the
proper scaling of the coupling strength with the system size depends on the degree of randomness.
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PACS numbes): 05.90+m, 05.40+j, 05.70.Fh

I. INTRODUCTION can be connected via the generalized model, whgjes
vary in the rang¢ — yr, ym) with a real numbery between
Large systems of mutually interacting oscillators haveO and 1. It is thus expected that the proper scaling of the
been used to explain the cooperative phenomena that prevaibupling changes ag is increased from zero to unity. It is
in physics, chemistry, biology, or even in social sciencesrevealed that the scaling changes rather abruptly at the fully
One of the most remarkable features of such an oscillatorandom valuey=1.
system is collective synchronization among its constituents, This paper consists of four sections. In Sec. Il we derive
which is well understood by means of the Kuramoto phasghe effective Hamiltonian from the Fokker-Planck equation
model[1]. The model is simple and mathematically tractableand obtain the self-consistency equations for the phase syn-
because of its global coupling structure. This all-to-all globalchronization(PS and the glass synchronizatid®S) order
coupling, which might seem to be unrealistic at first sight,parameters. It is shown that the glass transition appears only
arises naturally in certain cases, e.g., intracavity lasers, seriear the fully random regiop~ 1. We also obtain schematic
arrays of Josephson junctions, and biological syste2r. phase boundaries as functions of the coupling strength, noise
Recently, it has been shown that a current-driven network o$trength, and randomness. Section Il is devoted to the analy-
superconducting wires constitutes a physical realization o$is of the network of superconducting wires and Sec. IV
the Kuramoto model and interesting features of the networlsummarizes the main results.
may be explained in terms of synchronizati@q. The net-
Work_ system has _also gttracted interest with regard to the Il EEEECTIVE HAMILTONIAN AND
possibility of glassiness in the presence of a transverse mag- SELF-CONSISTENCY EQUATIONS
netic field[5—8], which is characterized by the divergence of
the relaxation time, hysteresis, memory and aging effects, We consider a network of oscillators, each of which is
and an extensive number of metastable states separated tlyaracterized by its phase and coupled to all the other oscil-
barriers scaling with the system size. In the context of synlators with strengttK. The system is described by the set of
chronization, however, little is known about the glassyequations of motion
phase, which is in general believed to be caused by random-
ness and frustration. In existing studies of randomly interact- dé, )
ing oscillators, neither clear evidence of glassiness nor the E:wi_Kz sin(6;— 0, —Ajj) + &i(1), 1)
behavior of Edwards-Anderso(EA) order parameter has J
been reported9,10].
The purpose of this paper is to investigate the effects o

random phase shifts on synchronization properties in the neshifts taking values in the intervl-ymr, yar) with y mea-

work of oscillators. We introduce the EA order parameter® . the d f q Th d &
and inspect the possibility of glass transition. Here alsgoUring the degree of randomness. the random najger

arises an interesting question as to the scaling of the couplin‘?}re characterized by

constants with the system size. In the Kuramoto model, each

here 6, and w; are the phase and the natural frequency of
he ith oscillator, respectively, and;;’s are random phase

oscillator interacts with all the others, resulting in that the (&(1)=0,
coupling constant should scale with the inverse of the system
size N. On the other hand, in the wire network, the phase <§i(t)§j(t))=2T5ij5(t—t’),

shift A;; due to a strong magnetic field in the gauge-invariant

phase difference takes rapidly fluctuating values and can b&here the noise strengthtakes the role of the temperature.
safely treated as a quenched random varig®|é]. In this  Without loss of generality, we set the mean natural fre-
case, the proper scaling of the coupling constant goes witquency equal to zero and assume thas are distributed
1/JN in the thermodynamic limit. Note that the two models according to a Gaussian distribution with unit variance,
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pling constant and the noise strength in units of the variance Z,=€eX
of the frequency distribution.
A convenient way to deal with a set of Langevin equa-

which is achieved by rescaling time and measuring the cou- p[

2 1<K 22 2 a @
Z T) - [(1—23 +b)C0$0i —GJ-)

a<pf

tions (1) is to resort to the Fokker-Planck equation for the X cog 0 — 6F) + (1—b)sin( 6 — 67)sin( 67 — 67)]
appropriate probability density. In the Kuramoto model, it is

convenient to introduce the order parametegxp(d¢) 1/K\?2

=(1/N)X;exp(¢), which allows one to decouple the set of ®eXp‘ Z. 5(? IEj [(1—2a%+b)cog (6" — 05)

equationg1) and to deal with the single-oscillator probabil-
ity density. The stationary solution of the corresponding

Fokker-Planck equation for the one-oscillator probability +(1—b)sin2(0i“—0j“)]], (4)
density has been given at finite temperatyfes12].

In the presence of the phase shifts, however, the resumn\%hereazsin mlym, b=sin2ym2ym, a and B are replica
frustration prevents such reduction; we thus resort to th(lendices and ?hez)v,erbar al’\%» ydénote the quenched av-
equation for theN-oscillator probability densityP({6;},t), era es'over the distribution (ﬁf” and over that ofy: . re-
which leads to a stationary solutioP(®({6;})xexp 9 1 b

- . : L spectively.
[—H({6)/T] with the effective Hamiltonian It is easy to check that without randomnegs=<0), InZ,

vanishes and the Kuramoto model is recovered. At finite
K temperatures, the Kuramoto model has been analyzed
2

H=—52> cod6—0;—Aj)— > w6 (20 through the use of the Fokker-Planck equation for the one-

17 ! oscillator probability density11,12. Here we briefly show
how the same results are reproduced by the replica method.
at temperatureT. In principle, the proper solution of the The free energy per oscillator is given by

Fokker-Planck equation should satisfy the normalization and

periodicity conditions, whereas in the above action the range f= lim l
of 6 is extended and periodicity is lacking. Nevertheless, the nN
inherent periodicity of the equation of motion allows one to

treat the phase as an extended variable simply by taking thghere

integration range from-na to nar. We thus regardt in Eq.

(2) as the effective Hamiltonian with periochzr, where the KN P KN N
limit n—oo is to be taken. The validity of the above Hamil- ®=5T . (A +Bo)—In Trpg({ ex T% (Aqcos
tonian with the extended variable can easily be justified, e.g.,

by means of the Villain approximation, which gives accurate
with the proper scaling of the coupling constant given by

: ©)

1—f IT dA,dBe N

n—0

1
results at low temperatures. Within the Villain scheme, it is +B,sing®) + ?g 06"
straightforward to show that the corresponding action pro-
vides a stationary solution to the periodic Villain form of the
Fokker-Planck equation and yields results independent of — T _ _
As we shall see below, the self-consistency equations fofc = K/N. In the limitN— o, the mean-field equations follow
order parameters obtained from H8) are indeed indepen- from the saddle-point conditions and take the form
dent ofn and reproduce precisely all the known results in the

appropriate limits. We thus believe that the Hamilton{ah Aa={(cos8*)),,,
describes the correct stationary properties of the system gov- B — o 6
erned by Eq(1) in the region of interesf13]. The average o= (sin6) )., (6)

over the quenched random phase shift;} is performed . .
through the use of the replica method. The replicated parti\—Nhere< ) stands for the average with respect to the action

tion sumZ" can be represented by K 1
£=exr{?2 (A,CcO80%+ B sing%) + ?E w6,
— ey
Zn=<< Ea I )T>> We adopt the replica-symmetric ansatz andAgetm,; and
{07 ® B,=m,. Performing the average with respect to the Gauss-
ian distribution ofw, we obtain the free energy in the form
=> lez<< ex (1f|')2 wi0?>>> , (3 _
{07} ! ® K 5, 5
f=5(ml+m2)—TJ Dz In I(x;2), @)
with
with  1(x;2)==,(-1D)",()[(ZT)2+n?]"t and x
K ) ) =(K/T) \/m21+ mzz, wherel , is the modified Bessel function
a . .
Z.=ex an cow®| + sing® , of the first kind andfDz represents the average over the
! Ea: 2T Z : 2.: ! ) ” normalized Gaussian variab#e The self-consistency equa-
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T which manifests that the coupling const&should scale as

K=K/+/N. In the limit N— 2, the mean-field equations take
the form

Qup={(cog 6"~ 6%) ),
GS Pas={(SIN6°=6%)) )., (19

with the action

0 ~ =\ 2
K 1/K
£=exp{§( ?) > [Qupcog 6%~ 6)
FIG. 1. Phase boundary foy=1 on the K,T) plane, below a<p
which glass synchronization appears. 1
+P,sin( 09— 0F) ]+ TE Y
tion for the PS order parametanzx/mzﬁ— m22 is then ob- @

tained by differentiating the free energy with respectrio
y g 9y P Note that Eq(11) corresponds tg (s**s?) ), in terms of

1 (x:2) the XY spins=exp(#). Thus the order parameteg,; and
m:f Z _’ , 8 P, are related to the EA order parameter measuring the
1(x;2) overlaps between two replicas. Considering thig)dymme-

) ) _ try of the whole system and assuming the replica symmetry,
wherel’(x;z)=dl(x;z)/dx. Here the shift of the integration \ye setQ,z=q andP,z=0, which yields the free energy in
range ofé in performing the trace in Eq5) does not change the form
the final form of Eq«(8). In this sense, the correct periodicity
is restored, which suggests that the Hamiltonian in &j. K2
indeed describes the correct stationary behavior of the sys- f= 8—T(2q—q2)—TJ DzDzDzln I(x;z), (12
tem in the whole region of interest. Note also that ER).

indeed agrees with the result of Rgf2] in the appropriate i - ) i
limit, displaying coherent motion characterized by globalWith X=Va/2(K/T)yzi+2;. The self-consistency equation
for the GS order parameteris then given by

synchronization foK exceeding the critical valué, . In the

zero-temperature limit, the direct expansion of ER). fails I"(x:2) [1'(x:2)]2 1'(x:2)
[4] and we adopt the spin-wave approximation, which is ac- 1—q=f DzDlezz[ — — - - ]
curate at low temperatures. Analyzing E8) via the proce- (x2)  [1(x2) ] xI(X2)

dure largely similar to that in Ref4], one can easily obtain

the familiar form . . . ~ =~ .
which allows a nontrivial solution foK>Ky(T). Since the

PS order parameter is always zero in this cage ), the

m:k'mjl dx o (Kmx?2 1—x2. (9) nontrivial solutionq+ 0 implies the appearance of the glass
-1\27 phase or GS. Adopting the spin-wave approximation in the

zero-temperature limit, one can easily see thapproaches
which vyields the critical value oK at zero temperature: unity asT—0, which impliesk,(T=0)=0 regardless of.
K(T=0)=8/7. A typical phase diagram on theK(T) Figure 1 displays a schematic phase diagramyferl on the

plane has been shown in Fig. 1 of Rpf]. (K, T) plane: Below the phase boundai{>Ky(T)], GS
In the opposite limit of the fully random shifty=1), emerges.
InZ, vanishes and the free energy per oscillator reads We next consider the intermediate regior §<<1. It is

obvious thatk is of the order oN™ % with 1/2<a=<1 in a
T globally coupled system, which maké&s in Eq. (3) arbi-
f=1lim m[l—f IT dQ.sdP.ge ™ ™*|, (100  trarily small compared t&;. This indicates that the random-
n—0 ness, unless it is perfect, does not destroy the PS but just
, renormalizes the coupling constant frdtnto aK. We thus
with conclude that the qualitative character of the system is not
affected by a small amount of disorder and the behavior of

N(K)? the system ch ther abruptly at the fully random limit
_NIK 2 27 ystem changes rather abruptly at the fully random limit.
¢_4(T> C;B[(Q“B) T (Pap)1=In Trg) To observe the transition more precisely, we 3etl
) — kN together withK=K/+/N, which makesZ, andZ, be
% << exp[ g( ;) E [Q.sc08 6~ 05) the same order. The free energy is then given by
a<pf

1 f=lim l[l—fl_[ dA,dB,dQ,zdP, e N?®
+Pgsin(0°— 0]+ =2, w0 )} n—o NN e
T v (14)
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with

Al

K

1
_ K 2, p2y, =
b= 2T§ (AZ+B2)+ 7

—| R

2
) ;ﬁmm)zﬂpaﬁ)z]
—In Tr<< exp{ %g w0+ ¥§a‘, (A,CcOs0”

1
+B,sing%) + >

R‘ 2
?> 2 [Qugcos 6"~ 0F)

+ P, gSin(6%— eﬁ)]J >>

The saddle-point equations read
An={(co9*) Y.
B, ={((sing*) ).
Qup={((cog6°= 6%)) ),
Pap={ (sin(6°—6°)) ),

w
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FIG. 2. Zero-temperature phase boundary on thg&j plane,
separating théphase synchronized state from the glass synchro-
nized one.

Fig. 2 separates the phase state from the glass synchronized
state. The schematic phase diagram at finite temperatures in
the (x,K,T) space is displayed in Fig. 3.

In the thermodynamic limit, howevek, is not a realizable
parameter and it is natural to examine the behavior according
to the value ofy. Unlessy=1, the PS order can be sustained
and the proper scaling should be=K/N in the range 0

<y<1. WhenK exceeds the critical valuk,, the non-

with the corresponding action. We again assume the replicHivial solution for m exists, makingZ, dominant. Here, al-

symmetry and seA,=my, B,=m,, Q,z=q, andP,z=0,
which gives the free energy in the form

_Ke , &2 , -
=5 m +—8T(2q—q )—Tf DzDzDzln I(x;2),
(15

wherex= X2+ x2 with
1/~ q-
XlET Kxm+ EKZl ,
NI
=Nz T

and the PS order parameter=/m?+m2. Differentiating
the above free energy with respecticandq, we finally get
the self-consistency equations

m=f DzDleZZ%, (16)
1"(x;z) [1"(x);z]® 1'(x;2)
1—q=f DzDlezz( (x.2) - I(x.2) xl(x;z)]'

Note that Eq.(17) is of the same form as Eq13) and re-
duces to the latter wher=0. Equationg16) and(17) may

be solved numerically to yield the phase boundaries in the

(x,K,T) space separating the synchronized, desynchronized,
and glass phases from each other. Figure 2 shows schemati-

cally the zero-temperature phase boundary on theK)

plane: Above the boundary, E(L6) yields a nontrivial so-

though IrZ, is of the order of IN, q is still of the order of
unity and determined by a function of nonzenoIn the case
that K<K,, the PS is destroyed(=0) and the coupling
constant in the self-consistency equation for the GS order
parametelq becomes of the order of {N, which makeg

also vanish in the thermodynamic limit. This indicates that
the nonzero PS and GS order parameters appear at the same
critical vaIueRc, which depends on the temperature. As
approaches unityK . grows arbitrarily large, as can be ob-
served in Eq(16), and finally aty=1, the PS order is en-
tirely banished. The region of the nonzero GS order param-
eter also shrinks ag is increased; nevertheless, unlike the
PS, the GS phase still survivesat 1 and occupies a finite
region, as shown in Fig. 1. In this fully random limit, the

proper scaling becomeé=K//N.

IIl. NETWORK OF SUPERCONDUCTING WIRES

In this section we consider a network of superconducting
wires, which consists of two orthogonal sets Mfparallel
superconducting wires with Josephson junctions at each

FIG. 3. Schematic phase diagram i, K,T) space. Phase syn-
chronization emerges below the surface drawn by dashed lines,
whereas glass synchronization occurs between the two surfaces.

lution for m, while Eq.(17) always has a nontrivial solution Above the surface drawn by solid lines, neither of the two types of
for g at zero temperature. Therefore, the phase boundary isynchronization can exist.
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node. Uniform current®! is injected at one edge of each It is important to note here that the degree of randomness
wire and extracted at the opposite edge. The current conset- iS not related to the strength of applied field in a direct
vation condition at each wire then gives the equations ofvay. Even in the weak-field limit, the distribution of the
motion [4] phase shiftA;; still covers the whole rangé—m, ), al-
though the distribution is not random but periodic, depending
oni andj. As a consequence, phase synchronization is de-
stroyed by the existence of even a weak field, which is con-
sistent with the existing studies on glassiness in the network
_ 1 . of wires[5,6,8. It is thus concluded that frustration rather
07 ==> oY+ 0@ —K2 sin(6!?— oY)+ (1), than randomness plays an important role in glassiness. In

N i fact, it has been shown that the randomness without frustra-

(18 tion can be easily removegd 0]. The quantitative investiga-

tion of the GS order parameter in the weak-field limit would
be an interesting topic for further study.

. 1 .
U= oK s )+ £,
i J

where 6) and 6{?) are the phases ath horizontal and ver-
tical wires, respectivelyw;=2eRI®YN# corresponds to the
natural frequency of thigh wire with the shunt resistané®

andK measures the coupling strength between the horizontal V. SUMMARY

and vertical wires. As in the precedlng section, one can ob- We have studied the synchronization properties in the net-
tain the Fokker-Planck equation for thélavire probability works of coupled oscillators with random phase shifts, with
density and the resulting effective Hamiltonian. In the pres- . . PR,

S . emphasis on the possibility of glass synchronization. While
ence of a transverse magnetic field, the phase difference e system without randomness is well known to display

rep]aced by the gauge-invariant one and the effective Ham"bhase synchronization, the fully random system is character-
tonian takes the form ; o ; ) . |
ized by glass synchronization. To investigate in detail the
effects of the random phase shift, we have introduced a pa-
H=—K2, cog 6 - 62 —A))- > (oYY +w®6?),  rameter controlling the degree of randomness and obtained
b ! the self-consistency equations for the phase synchronization
(19 and the glass synchronization order parameters through the
use of the replica method. It is found that partial randomness
in the phase shift merely alters the coupling constant, still
leaving the phase synchronization possible. In this case, the
proper scaling of the coupling constant goes a¢ dhd the
corresponding equations of motion under this scaling reveal
that the nonzero phase and glass synchronization order pa-
rameters emerge at the same value of the coupling strength.
This indicates that there does not exist the glassy phase in the
system with partially random phase shifts, characterized by
- . ) ' ; the nonzero glass synchronization order parameter together
andjth vertical wires and by theth horizontal andth ver-  \ith the vanishing PS order parameter. Near the fully ran-
tical wires It_aads to sigr_\ificantly Iargg difference betw@gjn dom regime, on the other hand, the phase synchronization
andA;; . This assumption allows quite an easy analysis beyrder parameter diminishes to zero, but a finite region of the
cause the correlat.|ons b_etween Fhe phases .of horizontal Wirg@nvanishing glass synchronization order parameter still re-
and those of vertical wires vanish. Accordingly, the mean-najns, signaling the glass phase in the system. In this fully
ingful overlaps of horizontal and vertical wires are definedrangom case, the proper scaling for the glass transition is
separately as given by 1A/N, as expected. We have thus obtained a sche-
matic phase diagram in the three-dimensional space of the

where A;j=(27/®o) [|A-dl with the flux quantum®,,.
Adopting the Landau gaugé&=Bxy with B being the
strength of applied field, we obtaity; =27 ¢ij/N with the
flux per unit strip p=NBa*®,, wherea is the distance
between two adjacer{paralle) wires. As is pointed out in
Refs.[5,6], Ajj’s can be regarded as quenched random vari
ables in the strong-field limitg> 1/N). Further, it is natural
to assume thad;; andA;; are mutually independent because
the small difference in the areas made by itiehorizontal

(1) — (Da_ (1)
Qup={(co ¢ 055)) Do, temperature, coupling strength, and randomness.

@ Da_ a2 We have also considered the network of superconducting
Qus={(cog6'V* = 6“%)) ) ,2. (20 wires in the presence of positional disorder. In the strong-

i ) i , field limit, the bond anglegphase shiftsbetween the hori-
It is then straightforward to write down the self-consistency,gntal set and the vertical set of wires may be regarded as
equation forg,=QY) (k=1,2), quenched random variables. Further, in the presence of the
positional disorder, it is allowed to treat them as independent
of each other. This leads to the self-consistency equations for
the glass synchronization order parameters, which are largely

1"(Xk;2) 2

(x:2)

1" (Xk32)
I(Xx;2)

1-qx= f DzDlezz(

Lo similar in form to those in the globally coupled system. Thus
M] (22) the qualitative behavior is concluded to be the same, which
Xil (X¢52) | originates from the fact that positional disorder tends to sup-

_ press the overlap between the two sets of wires.
with x,=/q,/2(K/T) \/221+ 222, whereq, andq, play the role Finally, we point out that the network of globally coupled
of the EA order parameters of horizontal and vertical wiresoscillators, in which the static features of the glass transition
respectively. have been studied here, may be regarded as the mean-field
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version of the XY gauge-glass model. The gauge-glasscannot be inferred from equilibrium studies. It is thus of
model has been extensively studied in relation to the vortexinterest to investigate the dynamics of the network system,

glass phase of disordered superconducfad. In two di-  which is left for future study.
mensions, equilibrium studies have suggested the absence of
glass order at finite temperaturgks], while the dynamical ACKNOWLEDGMENTS
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